

Course Contents

Prepared by : Bioinfo Cloud Team

Get in touch!

Key Activities

01

0

03

Workshops on different bioinformatics course in online and offline mode

Hands on training program

Customized Data Analysis

Research Consultant

Why to choose Bioinfo Cloud?

Cost Effectiveness

On Job Practical Training

Quality Learning Certified Institution

Experienced Teachers Theoretical + Hands on

Get in touch!

Biostatistics

- Measures describing the central tendency distributions- average, median, mode
- Measures of dispersion: Dispersion, Range, standard deviation
- **Probability**: Normal distribution and properties.
- Parametric test: t-test (Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way).
- **Correlation**: Definition, Karl Pearson's coefficient of correlation.
- **Regression modelling**: Hypothesis testing in Simple and Multiple regression models
- **Graphs**: Histogram, Pie Chart, Cubic Graph.
- Statistical Analysis Using Excel, SPSS, Graph pad prism.
- Basic fundamentals of molecular biology used in bioinformatics

Fundamental Of Bioinformatics

- Fundamentals of Molecular biology used in bioinformatics
- Biological Databases: Nucleotide/ Genome Databases (GenBank, EMBL, DDBJ), Protein Sequence Database (Uniprot-KB: SWISS-PROT), Structure databases (PDB, NDB, PubChem). Sequence file formats: Various file formats for bio-molecular sequences: GenBank, FASTA, GCG, MSF etc.
- Sequence Analysis: Basic concepts of sequence similarity, identity and homology, definitions of homologues, orthologues, paralogues and xenologues
- Scoring matrices, PAM and BLOSUM,
 Sequence alignment: Measurement of sequence similarity; Similarity and homology.
- Pairwise sequence alignment: Basic concepts of sequence alignment, pairwise alignments for analysis of Nucleic acid and protein sequences and interpretation of results.

Get in touch!

Basic tools and popular software in Bioinformatics

- Primer designing for PCR, RT PCR, Molecular Marker
- Pair-wise alignment and Multiple sequence alignment; ClustalW
- Phylogenetic analysis; MEGA
- Dot Plot
- TB tool

Get in touch!

- Use of in-sequence manipulation Bioedit
- Motif analysis: MEME

Bioinformatics Programming Languages

- Advanced R: Building upon foundational R skills, you'll explore advanced data manipulation, visualization techniques, and statistical analyses tailored specifically for bioinformatics applications. Topics may include genomic data analysis and statistical modelling.
- Perl / Bioperl: Perl has long been a staple in bioinformatics due to its text-processing capabilities and extensive bioinformatics libraries like Bioperl. You'll learn how to parse and manipulate biological sequences efficiently.
- **Python / Biopython**: Python's versatility and readability make it increasingly popular in bioinformatics. With Biopython, you'll harness powerful libraries for sequence analysis, & sequence manipulation. You'll also explore tools for data analysis, & visualization used in bioinformatics.
- Machine Learning: Artificial Intelligence (ML-AI): ML techniques are crucial in extracting meaningful patterns from large biological datasets. You'll learn about supervised and unsupervised learning algorithms, feature selection, and model evaluation.

NGS Data Analysis

- Introduction Genomics Bioinformatics
- Basic Understanding of different NGS platforms
- LINUX Operating System: Overview of Linux Architecture and Basic Commands
- Basics of genome assembly and annotation
- Quality Check of data using fastqc
- Interpretation of NGS Data
- **RNAseq analysis:** Alignment or Mapping, Differential Gene Expression (DEGs)

Get in touch!

Bioinformatics for Molecular Breeding

- Basic concept of molecular marker and QTL mapping
- Various Molecular Diversity analysis
- Molecular marker data handling
- SNP data analysis
- Genome-wide association studies (GWAS) with TASSEL and GAPIT in R
- Haplotype analysis
- Basic of R and data analysis
- Data representation and interpretation

Get in touch!

Research Data Pre-processing, Analysis, Interpretation and Manuscript Writing: A Comprehensive Guide

- Biostatistics
- Data analysis and visualization tools: Various designs: CRD, RBD, Factorial ANOVA, DMRT.
- EXCEL
- R
- IBM-SPSS
- GRAPH PAD PRISM
- Data interpretation
- Research paper writing

Get in touch!

Batches Begins Soon!!

Admissions Open

